

Preparing a research project Research designs and practicalities Mits Ota

Determining methodology

3 dimensions of methodology

Design types

Experimental studies

- Manipulate (i.e., systematically vary) the independent variable and control extraneous variables.
- Strong case for causality, but potential issues with validity.

Design types

Correlational (ex post facto) studies

- Assess the statistical relationship between variables without manipulation or control.
- Causality cannot be established; but the design allows us to explore 'what is going on'; often used with corpus data.

Learne	Metho	Sex	Age	L1	Degre	WM	L2
r	d				е		level
Abby	А	F	17	En	UG	7.3	6.8
Björn	В	М	37	Sw	UG	4.9	7.2
Cindy	В	F	30	En	PG	5.4	8.4
Dave	А	М	25	En	HS	6.6	7.3
Edith	В	F	23	Fr	UG	7.0	9.1
•••	•••	•••	•••	•••	•••	•••	•••

Design types

Modelling (simulation) studies

- Examine whether patterns in real data can be simulated by a simplified model that represents a system (e.g., learning).
- Can substitute direct experimentation.

Grouping

Cross-sectional

- Samples of predefined populations (e.g., age, language)
- No carry-over effects; but more noise from individual differences

1-year-olds	2-year-olds	3-year-olds
Anne Bob Charlotte Dave Emma Fred	Abby Bill Cathy Dan Eve Finn	Amanda Blake Caitriona Damian Emily Frank

Grouping

Longitudinal

- Data collection over time from same participants
- Carry-over effects; but less variation noise
- Typically fewer participants than cross-sectional design due to constraints on recruitment and attrition

Grouping

Experimental

- Randomly assign a pool of participants to different experimental groups/conditions
- Or collect different types of data from the same participants: e.g., before and after a 'treatment' (i.e., pretest/post-test)

Intact

• Pre-assigned groups of non-inherent characteristics: e.g., participants in Class A versus Class B

Data type

Behavioural

- On-line data: Real-time measurements of participants' performance: e.g., reaction time, eye-movement
- Off-line data: Untimed measurements of participants' performance: e.g., grammatical judgments, comprehension
- Elicited production data

Neural

• Measurements of brain activities in response to stimuli: electrical signals (electroencephalogram; EEG) or blood flow (functional magnetic resonance imaging; fMRI, optical tomography; OT)

Data type

Corpus

- Recorded and/or transcribed linguistic data of spontaneous or structured speech
- Learner corpora: CHILDES, TalkBank, ICLE

Self-reported data

 Information about participants reported by themselves: e.g., questionnaires/surveys, self-rating of language proficiency, vocabulary list (MacArthur CDI)

What methods can be used to address this research question?

When do English-speaking children acquire the passive construction?

- Independent factor: Age of children
- Dependent factor: However you operationalise the 'acquisition' of passives in your design/data type

Method 1: Corpus analysis

- Longitudinal data of spontaneous production
- Data: First recorded cases of non-imitated passives
- IV = age; DV = first case

65(

96	*CHI:	they won't hurt ‹their [?]› head by icicles . 🕨
97	%mor:	pro:sub they mod will~neg not v hurt&ZER0 det:poss their n head
98	prep	by n icicle-PL .
99	%gra:	1 4 SUBJ 2 4 AUX 3 2 NEG 4 0 ROOT 5 6 MOD 6 4 OBJ 7 4 JCT 8 7 POBJ
90	9 4 P	UNCT
91	%pho:	deɪ ˈwʊ ˈhʊ də ˈhɛ baɪ ˈaɪsɪglθ
92	%mod:	'ðeɪ 'wount 'hʌıt 'ðɛɹ 'hɛd 'baɪ 'aɪsɪkəlz

▶ 00:00 / 63:24 ● 🚽 👘 🗕 🚼 🛓

Method 2: Priming experiment

- Cross-sectional groups: Age 2, 3 and 4
- Data: Children's elicited production
- IV = age; DV = active vs passive response

"Hi Thomas! Hi Percy!"

"Look! Percy is pushed by Thomas"

"What's happening now?"

Method 3: Preferential looking

- Cross-sectional groups: Age 2, 3 and 4
- Data: Eye movement between two images
- IV = age; DV = looking time to matching picture

Look! Percy is pushed by Thomas.

Between vs within-subjects (repeated-measures) design

	Participant	Condition
Gro up A	Andy	Х
	Beth	Х
	Charles	Х
	Debbie	Х

	Participant	Condition
Gro	Eddie	Y
up B	Frances	Y
	George	Y
	Hannah	Y

Participant	Condition		
Andy	Х	Y	
Beth	Х	Υ	
Charles	Х	Y	
Debbie	Х	Y	
Eddie	Х	Y	
Frances	Х	Υ	
George	Х	Υ	
Hannah	Х	Y	

Example: X & Y = word-learning methods

Between vs within-subjects (repeated-measures) design

Between-subjects

- 'Noisy' and less powerful
- No carry-over effects

Within-subjects

- Participants held constant across conditions
- More statistically 'powerful'
- Carry-over effects; not all conditions can be repeated
- Counter-balancing necessary

Factorial design

Two or more factors and their interactions can be tested by including all permutations of the levels of factors

		Factor 1		
		Condition X	Condition Y	
Factor 2	Condition P			
	Condition Q			

Example: Factor 1 (X = explicit corrections; Y = no corrections) Factor 2 (P = morphology; Q = syntax)

Control group

A group that functions as the comparison for the experimental group in a between-subjects design

How many participants (N)?

Rule of thumb

- Look up similar studies in the literature
- Check the N size of those studies and try to test as many

How many participants (N)?

Power analysis

- Think about the **smallest effect siz**e that you would consider meaningful.
- Calculate required sample size to obtain the required statistical power (minimum 80% power recommended) to detect that effect size. (This can be done with the simr package)

Matching and screening

- Matching: Ensuring that the participants between groups are similar in all respects (e.g., age, sex) except the critical condition
- Screening: Ensuring that the participants meet certain conditions that can only be checked by some measurement (e.g., proficiency test)
- Both constrain recruitment

Compensation

- Monetary: £5/30 min for a simple experiment is standard
- Strategies to reduce monetary expenditure
 - Prize draw: e.g., Winner gets a gift voucher
 - Hand-made rewards: e.g., baked goods
 - Participation swap
- Use of mailing lists. See <u>PPLS policy</u>. Include ethics permission statement.

Ethics: General principles

- **1. Voluntary participation**: Participants must no be coerced and must be allowed to withdraw from studies.
- **2. Informed consent**: Participants must give their consent to participate after being fully informed about the procedures, risks, and how their data might be used.
- **3. Protection**: Participants should not be exposed to physical or mental harm.
- **4. Anonymity**: The identity of the participants must not be revealed without their consent.
- **5. No deception**: Do not misrepresent or withhold information unless it is absolutely necessary for the study (and even so, check with supervisor/committee).

Ethics: LEL procedure

- 1. Complete the *Research Ethics Training Course* on Learn.
- 2. Prepare components for your ethics application
 - 1. Answers to ethics questions
 - 2. Information sheet and consent form (templates available)
 - 3. Recruitment texts, if relevant
- 3. Meet with your supervisor to submit the application.
- 4. Wait for a reviewer to get back to you. It can take up to 10 working days to hear back.
- 5. Do not start data collection until you receive approval.

Details at LEL Ethics page. (Or Psychology Ethics page)

Ethics: Vulnerable groups

Vulnerable groups

- Children under the age of 16 (without adult supervision)
- Adults in care, prison etc.

Basic Disclosure

- A one-time background-check for relevant convictions in the UK. Typically asked if testing in schools.
- Can apply for it <u>online</u>.

Protection of Vulnerable Group (PVG) scheme

- For longer-term involvement (caring, teaching etc.)
- Contact College PG Office for application (hsspg@ed.ac.uk)

Data management

What counts as data?

- Recordings
- Transcripts
- Questionnaires
- Numerical or textual data of responses in tests, experiments etc.
- Stimuli
- Consent forms

Data management

Guiding principles

- **1. Avoid recollecting data**: Mark the presence of your data so that someone else doesn't have to collect the same data.
- **2. Don't lose data**: Make sure they are kept properly and note where they are.
- **3. Keep data complete:** Look after the meta-data so that the data can be useful.
- **4. Identify ownership:** Establish who owns the data and who is responsible for looking after them (data steward).
- **5. Control data lifecycle:** Decide what is going to happen to the data (i.e., access, retention/destruction).

Data management

Guiding principles (cont.)

- 6. Store data securely:
 - Anonymised/non-sensitive data: Store on passwordprotected personal computer or secure web-based server. Regular back-ups
 - Non-anonymous/sensitive data: Store on encrypted university storage profile (automatic backup)

Summary

- In choosing a method suitable for your research question/ hypotheses, consider three aspects of methodology: design type, grouping and data type.
- In designing a study, maximise control and power by giving thoughts to the use of between- vs within-subjects design, control group, and factorial design.
- Determine the N size by consulting previous studies.
- Follow the principles of ethics and data management for research.